Example of Finding the Determinant of a 3x3 Matrix
This solution was made using the calculator presented on the site.
1. Let's calculate the determinant A using a elementary transformations.
det A = | -3 | -3 | -4 | = | ||
-4 | 4 | -6 | ||||
4 | -6 | 5 |
The elements of column 1 multiplied by -1 are added to the corresponding elements of column 3. more info
-3 | -3 | -4 + ( -3) * ( -1) | ||
-4 | 4 | -6 + ( -4) * ( -1) | ||
4 | -6 | 5 + 4 * ( -1) |
This elementary transformation does not change the value of the determinant.
= | -3 | -3 | -1 | = | ||
-4 | 4 | -2 | ||||
4 | -6 | 1 |
The elements of column 3 multiplied by -2 are added to the corresponding elements of column 1. more info
-3 + ( -1) * ( -2) | -3 | -1 | ||
-4 + ( -2) * ( -2) | 4 | -2 | ||
4 + 1 * ( -2) | -6 | 1 |
This elementary transformation does not change the value of the determinant.
= | -1 | -3 | -1 | = | ||
0 | 4 | -2 | ||||
2 | -6 | 1 |
The elements of column 3 multiplied by 2 are added to the corresponding elements of column 2. more info
-1 | -3 + ( -1) * 2 | -1 | ||
0 | 4 + ( -2) * 2 | -2 | ||
2 | -6 + 1 * 2 | 1 |
This elementary transformation does not change the value of the determinant.
= | -1 | -5 | -1 | = | ||
0 | 0 | -2 | ||||
2 | -4 | 1 |
Expand the determinant along the row 2. more info
|
Row number 2 Column number 1 |
Element | Row 2 and column 1 have been deleted |
|||||||||||||
( -1) 2 + 1 | * | 0 | * |
|
|
Row number 2 Column number 2 |
Element | Row 2 and column 2 have been deleted |
|||||||||||||
( -1) 2 + 2 | * | 0 | * |
|
|
Row number 2 Column number 3 |
Element | Row 2 and column 3 have been deleted |
|||||||||||||
( -1) 2 + 3 | * | -2 | * |
|
Products are summed. If the element is zero than product is zero too.
= ( -1) 2 + 3 * ( -2) * | -1 | -5 | = | ||
2 | -4 |
= 2 * | -1 | -5 | = | ||
2 | -4 |
= 2 * ( -1 * ( -4) - ( -5) * 2 ) =
= 2 * ( 4 + 10 ) =
= 28
2. Let's calculate the determinant A by expanding along the row 1.
det A = | -3 | -3 | -4 | = | ||
-4 | 4 | -6 | ||||
4 | -6 | 5 |
Expand the determinant along the row 1. more info
|
Row number 1 Column number 1 |
Element | Row 1 and column 1 have been deleted |
|||||||||||||
( -1) 1 + 1 | * | -3 | * |
|
|
Row number 1 Column number 2 |
Element | Row 1 and column 2 have been deleted |
|||||||||||||
( -1) 1 + 2 | * | -3 | * |
|
|
Row number 1 Column number 3 |
Element | Row 1 and column 3 have been deleted |
|||||||||||||
( -1) 1 + 3 | * | -4 | * |
|
Products are summed. If the element is zero than product is zero too.
= ( -1) 1 + 1 * ( -3) * | 4 | -6 | |||
-6 | 5 |
+ ( -1) 1 + 2 * ( -3) * | -4 | -6 | |||
4 | 5 |
+ ( -1) 1 + 3 * ( -4) * | -4 | 4 | = | ||
4 | -6 |
= - 3 * | 4 | -6 | |||
-6 | 5 |
+ 3 * | -4 | -6 | |||
4 | 5 |
- 4 * | -4 | 4 | = | ||
4 | -6 |
= - 3 * ( 4 * 5 - ( -6) * ( -6) )
+ 3 * ( -4 * 5 - ( -6) * 4 )
- 4 * ( -4 * ( -6) - 4 * 4 ) =
= - 3 * ( 20 - 36 )
+ 3 * ( -20 + 24 )
- 4 * ( 24 - 16 ) =
= 48
+ 12
- 32 =
= 28
3. Let's calculate the determinant A by expanding along the row 2.
det A = | -3 | -3 | -4 | = | ||
-4 | 4 | -6 | ||||
4 | -6 | 5 |
Expand the determinant along the row 2. more info
|
Row number 2 Column number 1 |
Element | Row 2 and column 1 have been deleted |
|||||||||||||
( -1) 2 + 1 | * | -4 | * |
|
|
Row number 2 Column number 2 |
Element | Row 2 and column 2 have been deleted |
|||||||||||||
( -1) 2 + 2 | * | 4 | * |
|
|
Row number 2 Column number 3 |
Element | Row 2 and column 3 have been deleted |
|||||||||||||
( -1) 2 + 3 | * | -6 | * |
|
Products are summed. If the element is zero than product is zero too.
= ( -1) 2 + 1 * ( -4) * | -3 | -4 | |||
-6 | 5 |
+ ( -1) 2 + 2 * 4 * | -3 | -4 | |||
4 | 5 |
+ ( -1) 2 + 3 * ( -6) * | -3 | -3 | = | ||
4 | -6 |
= 4 * | -3 | -4 | |||
-6 | 5 |
+ 4 * | -3 | -4 | |||
4 | 5 |
+ 6 * | -3 | -3 | = | ||
4 | -6 |
= 4 * ( -3 * 5 - ( -4) * ( -6) )
+ 4 * ( -3 * 5 - ( -4) * 4 )
+ 6 * ( -3 * ( -6) - ( -3) * 4 ) =
= 4 * ( -15 - 24 )
+ 4 * ( -15 + 16 )
+ 6 * ( 18 + 12 ) =
= -156
+ 4
+ 180 =
= 28
4. Let's calculate the determinant A by expanding along the row 3.
det A = | -3 | -3 | -4 | = | ||
-4 | 4 | -6 | ||||
4 | -6 | 5 |
Expand the determinant along the row 3. more info
|
Row number 3 Column number 1 |
Element | Row 3 and column 1 have been deleted |
|||||||||||||
( -1) 3 + 1 | * | 4 | * |
|
|
Row number 3 Column number 2 |
Element | Row 3 and column 2 have been deleted |
|||||||||||||
( -1) 3 + 2 | * | -6 | * |
|
|
Row number 3 Column number 3 |
Element | Row 3 and column 3 have been deleted |
|||||||||||||
( -1) 3 + 3 | * | 5 | * |
|
Products are summed. If the element is zero than product is zero too.
= ( -1) 3 + 1 * 4 * | -3 | -4 | |||
4 | -6 |
+ ( -1) 3 + 2 * ( -6) * | -3 | -4 | |||
-4 | -6 |
+ ( -1) 3 + 3 * 5 * | -3 | -3 | = | ||
-4 | 4 |
= 4 * | -3 | -4 | |||
4 | -6 |
+ 6 * | -3 | -4 | |||
-4 | -6 |
+ 5 * | -3 | -3 | = | ||
-4 | 4 |
= 4 * ( -3 * ( -6) - ( -4) * 4 )
+ 6 * ( -3 * ( -6) - ( -4) * ( -4) )
+ 5 * ( -3 * 4 - ( -3) * ( -4) ) =
= 4 * ( 18 + 16 )
+ 6 * ( 18 - 16 )
+ 5 * ( -12 - 12 ) =
= 136
+ 12
- 120 =
= 28
5. Let's calculate the determinant A by expanding along the column 1.
det A = | -3 | -3 | -4 | = | ||
-4 | 4 | -6 | ||||
4 | -6 | 5 |
Expand the determinant along the column 1. more info
|
Row number 1 Column number 1 |
Element | Row 1 and column 1 have been deleted |
|||||||||||||
( -1) 1 + 1 | * | -3 | * |
|
|
Row number 2 Column number 1 |
Element | Row 2 and column 1 have been deleted |
|||||||||||||
( -1) 2 + 1 | * | -4 | * |
|
|
Row number 3 Column number 1 |
Element | Row 3 and column 1 have been deleted |
|||||||||||||
( -1) 3 + 1 | * | 4 | * |
|
Products are summed. If the element is zero than product is zero too.
= ( -1) 1 + 1 * ( -3) * | 4 | -6 | |||
-6 | 5 |
+ ( -1) 2 + 1 * ( -4) * | -3 | -4 | |||
-6 | 5 |
+ ( -1) 3 + 1 * 4 * | -3 | -4 | = | ||
4 | -6 |
= - 3 * | 4 | -6 | |||
-6 | 5 |
+ 4 * | -3 | -4 | |||
-6 | 5 |
+ 4 * | -3 | -4 | = | ||
4 | -6 |
= - 3 * ( 4 * 5 - ( -6) * ( -6) )
+ 4 * ( -3 * 5 - ( -4) * ( -6) )
+ 4 * ( -3 * ( -6) - ( -4) * 4 ) =
= - 3 * ( 20 - 36 )
+ 4 * ( -15 - 24 )
+ 4 * ( 18 + 16 ) =
= 48
- 156
+ 136 =
= 28
6. Let's calculate the determinant A by expanding along the column 2.
det A = | -3 | -3 | -4 | = | ||
-4 | 4 | -6 | ||||
4 | -6 | 5 |
Expand the determinant along the column 2. more info
|
Row number 1 Column number 2 |
Element | Row 1 and column 2 have been deleted |
|||||||||||||
( -1) 1 + 2 | * | -3 | * |
|
|
Row number 2 Column number 2 |
Element | Row 2 and column 2 have been deleted |
|||||||||||||
( -1) 2 + 2 | * | 4 | * |
|
|
Row number 3 Column number 2 |
Element | Row 3 and column 2 have been deleted |
|||||||||||||
( -1) 3 + 2 | * | -6 | * |
|
Products are summed. If the element is zero than product is zero too.
= ( -1) 1 + 2 * ( -3) * | -4 | -6 | |||
4 | 5 |
+ ( -1) 2 + 2 * 4 * | -3 | -4 | |||
4 | 5 |
+ ( -1) 3 + 2 * ( -6) * | -3 | -4 | = | ||
-4 | -6 |
= 3 * | -4 | -6 | |||
4 | 5 |
+ 4 * | -3 | -4 | |||
4 | 5 |
+ 6 * | -3 | -4 | = | ||
-4 | -6 |
= 3 * ( -4 * 5 - ( -6) * 4 )
+ 4 * ( -3 * 5 - ( -4) * 4 )
+ 6 * ( -3 * ( -6) - ( -4) * ( -4) ) =
= 3 * ( -20 + 24 )
+ 4 * ( -15 + 16 )
+ 6 * ( 18 - 16 ) =
= 12
+ 4
+ 12 =
= 28
7. Let's calculate the determinant A by expanding along the column 3.
det A = | -3 | -3 | -4 | = | ||
-4 | 4 | -6 | ||||
4 | -6 | 5 |
Expand the determinant along the column 3. more info
|
Row number 1 Column number 3 |
Element | Row 1 and column 3 have been deleted |
|||||||||||||
( -1) 1 + 3 | * | -4 | * |
|
|
Row number 2 Column number 3 |
Element | Row 2 and column 3 have been deleted |
|||||||||||||
( -1) 2 + 3 | * | -6 | * |
|
|
Row number 3 Column number 3 |
Element | Row 3 and column 3 have been deleted |
|||||||||||||
( -1) 3 + 3 | * | 5 | * |
|
Products are summed. If the element is zero than product is zero too.
= ( -1) 1 + 3 * ( -4) * | -4 | 4 | |||
4 | -6 |
+ ( -1) 2 + 3 * ( -6) * | -3 | -3 | |||
4 | -6 |
+ ( -1) 3 + 3 * 5 * | -3 | -3 | = | ||
-4 | 4 |
= - 4 * | -4 | 4 | |||
4 | -6 |
+ 6 * | -3 | -3 | |||
4 | -6 |
+ 5 * | -3 | -3 | = | ||
-4 | 4 |
= - 4 * ( -4 * ( -6) - 4 * 4 )
+ 6 * ( -3 * ( -6) - ( -3) * 4 )
+ 5 * ( -3 * 4 - ( -3) * ( -4) ) =
= - 4 * ( 24 - 16 )
+ 6 * ( 18 + 12 )
+ 5 * ( -12 - 12 ) =
= -32
+ 180
- 120 =
= 28