Przykład rozwiązania układu równań liniowych metodą eliminacji Gaussa.

Takie rozwiązanie zostało otrzymane przy użyciu kalkulatora przedstawionego na stronie.

Prosimy zwrócić uwagę na to, że współczynniki umieszczone na "czerwonych" pozycjach znikają.
Знак системы3x1+2x2+x3+x4 = - 2
x1 -x2+4x3-x4 = - 1
- 2 x1- 2 x2- 3 x3+x4 = 9
x1 +5x2-x3+2x4 = 4
Zamieńmy miejscami równania 1 i 2
Знак системыx1 -x2+4x3-x4 = - 1
3x1+2x2+x3+x4 = - 2
- 2 x1- 2 x2- 3 x3+x4 = 9
x1 +5x2-x3+2x4 = 4
Do równania 2 dodajemy równanie 1 pomnożone przez -3.   dowiedz się więcej
( 3 x1 + x1 * ( -3) )
+ ( 2 x2 + ( - x2) * ( -3) )
+ ( x3 + 4 x3 * ( -3) )
+ ( x4 + ( - x4) * ( -3) )
= -2 + ( -1) * ( -3)
"Czerwony" współczynnik jest równy zero.
Знак системыx1 -x2+4x3-x4 = - 1
5x2- 11 x3+4x4 = 1
- 2 x1- 2 x2- 3 x3+x4 = 9
x1 +5x2-x3+2x4 = 4
Do równania 3 dodajemy równanie 1 pomnożone przez 2.   dowiedz się więcej
( -2 x1 + x1 * 2 )
+ ( -2 x2 + ( - x2) * 2 )
+ ( -3 x3 + 4 x3 * 2 )
+ ( x4 + ( - x4) * 2 )
= 9 + ( -1) * 2
"Czerwony" współczynnik jest równy zero.
Знак системыx1 -x2+4x3-x4 = - 1
5x2- 11 x3+4x4 = 1
- 4 x2+5x3-x4 = 7
x1 +5x2-x3+2x4 = 4
Do równania 4 dodajemy równanie 1 pomnożone przez -1.   dowiedz się więcej
( x1 + x1 * ( -1) )
+ ( 5 x2 + ( - x2) * ( -1) )
+ ( - x3 + 4 x3 * ( -1) )
+ ( 2 x4 + ( - x4) * ( -1) )
= 4 + ( -1) * ( -1)
"Czerwony" współczynnik jest równy zero.
Знак системыx1 -x2+4x3-x4 = - 1
5x2- 11 x3+4x4 = 1
- 4 x2+5x3-x4 = 7
6x2- 5 x3+3x4 = 5
Do równania 2 dodajemy równanie 3.   dowiedz się więcej
( 5 x2 + ( -4 x2) )
+ ( -11 x3 + 5 x3 )
+ ( 4 x4 + ( - x4) )
= 1 + 7
To przekształcenie pozwoli nam przez jakiś czas liczyć bez ułamków.
Знак системыx1 -x2+4x3-x4 = - 1
x2 - 6 x3+3x4 = 8
- 4 x2+5x3-x4 = 7
6x2- 5 x3+3x4 = 5
Do równania 3 dodajemy równanie 2 pomnożone przez 4.   dowiedz się więcej
( -4 x2 + x2 * 4 )
+ ( 5 x3 + ( -6 x3) * 4 )
+ ( - x4 + 3 x4 * 4 )
= 7 + 8 * 4
"Czerwony" współczynnik jest równy zero.
Знак системыx1 -x2+4x3-x4 = - 1
x2 - 6 x3+3x4 = 8
- 19 x3+11x4 = 39
6x2- 5 x3+3x4 = 5
Do równania 4 dodajemy równanie 2 pomnożone przez -6.   dowiedz się więcej
( 6 x2 + x2 * ( -6) )
+ ( -5 x3 + ( -6 x3) * ( -6) )
+ ( 3 x4 + 3 x4 * ( -6) )
= 5 + 8 * ( -6)
"Czerwony" współczynnik jest równy zero.
Знак системыx1 -x2+4x3-x4 = - 1
x2 - 6 x3+3x4 = 8
- 19 x3+11x4 = 39
31x3- 15 x4 = - 43
Do równania 4 dodajemy równanie 3 pomnożone przez 31/19.   dowiedz się więcej
( 31 x3 + ( -19 x3) * 31/19 )
+ ( -15 x4 + 11 x4 * 31/19 )
= -43 + 39 * 31/19
"Czerwony" współczynnik jest równy zero.
Знак системыx1 -x2+4x3-x4 = - 1
x2 - 6 x3+3x4 = 8
- 19 x3+11x4 = 39
56/19x4 = 392/19
Z równania 4 układu znajdujemy wartość zmiennej x4.
56/19 x4 = 392/19
x4 = 7
Z równania 3 układu znajdujemy wartość zmiennej x3.
- 19 x3 + 11 x4 = 39
- 19 x3 = 39 - 11 x4
- 19 x3 = 39 - 11 * ( 7 )
x3 = 2
Z równania 2 układu znajdujemy wartość zmiennej x2.
x2 - 6 x3 + 3 x4 = 8
x2 = 8 + 6 x3 - 3 x4
x2 = 8 + 6 * ( 2 ) - 3 * ( 7 )
x2 = - 1
Z równania 1 układu znajdujemy wartość zmiennej x1.
x1 - x2 + 4 x3 - x4 = - 1
x1 = - 1 + x2 - 4 x3 + x4
x1 = - 1 + ( - 1 ) - 4 * ( 2 ) + ( 7 )
x1 = - 3
Odpowiedź:
x1 = - 3
x2 = - 1
x3 = 2
x4 = 7





2021 All rights reserved
matematika1974@yandex.ru
site partners